一肖中特公式
首页 > 论文 > 激光与光电子学进展 > 56卷 > 8期(pp:81004--1)

基于二次引导滤波的局部立体匹配算法

Local Stereo Matching Algorithm Based on Secondary Guided Filtering

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对当前局部立体匹配视差精度低的问题,提出了一种二次引导滤波模型,并应用于局部立体匹配算法。在新设计的二次引导滤波模型中,将第一次引导滤波的输出图像作为第二次引导滤波的引导图像,克服了传统引导滤波的缺陷,?#31181;?#20102;噪声。在代价聚合阶段引入二次引导滤波,使用跨尺度框架聚合各尺度的匹配代价,进一步提高算法匹配精度。实验结果表明,基于二次引导滤波的局部立体匹配算法在Middlebury测试平台上对标准立体图像对的检测具有更高的精度,且代价聚合步骤的时间复杂度与滤波窗口大小无关,在匹配精?#32676;?#36895;度上都取得了良好的效果。二次引导滤波的思想有望在立体匹配等领域取得更广泛的应用。

Abstract

To solve the problems of low disparity accuracy in local stereo matching, a secondary guided filtering model is proposed and applied to the local stereo matching algorithm. The newly designed secondary guided filtering model overcomes the deficiency of traditional guided filtering and further suppresses the noises because the result of the first guided image filtering is used as the guiding image of the second guided filtering. In the cost aggregation phase, the introduction of the secondary guided filtering further improves the matching accuracy because the cross-scale framework is used to aggregate the matching cost volume at each scale. The experimental results demonstrate that the local stereo matching algorithm based on the secondary guided filtering possesses a high accuracy in the detection of standard stereo image pairs on the Middlebury benchmark. Moreover, the temporal complexity of the cost aggregation phases is independent of the filtering kernel size, and the proposed algorithm achieves good performances in speed and accuracy. The idea of the secondary guided filtering has potential applications in stereo matching and others.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN911.73

DOI:10.3788/lop56.081004

所属栏目:图像处理

基金项目:国家自然科学基金(61705127)、上海市经济和信息化委员会产业转型升级发展专项资金产学研?#29486;?#19987;题(沪CXY-2016-009)、上海市浦江人才计划项目(16PJ1431000)

收稿日期:2018-09-28

修改稿日期:2018-11-04

网络出版日期:2018-11-13

作者单位    点击查看

王凯:上海工程技术大学电子电气工程学院, 上海 201600上海晨光文具股份有限公司, 上海 201406
李志伟:上海工程技术大学电子电气工程学院, 上海 201600
朱成德:上海工程技术大学电子电气工程学院, 上海 201600
王鹿:上海工程技术大学电子电气工程学院, 上海 201600
黄润才:上海工程技术大学电子电气工程学院, 上海 201600
郭亨长:上海晨光文具股份有限公司, 上海 201406

联系人作者:李志伟([email protected]); 王凯([email protected]);

【1】Wang Q, Fang J W, Yuan Y. Adaptive road detection via context-aware label transfer[J]. Neurocomputing, 2015, 158: 174-183.

【2】Scharstein D, Szeliski R, Zabih R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[C]∥Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001), December 9-10, 2001, Kauai, HI, USA. New York: IEEE, 2001: 131-140.

【3】Xu J X, Li Q W, Liu Y, et al. Stereo matching algorithm based on color weights and tree dynamic programming[J]. Acta Optica Sinica, 2017, 37(12): 1215007.
许金鑫, 李庆武, 刘艳, 等. 基于色彩权值和树形动态规划的立体匹配算[J]. 光学学报, 2017, 37(12): 1215007.

【4】Peng Y, Li G, Wang R G, et al. Stereo matching with space-constrained cost aggregation and segmentation-based disparity refinement[J]. Proceedings of SPIE, 2015, 9393: 939309.

【5】Yang Q X. A non-local cost aggregation method for stereo matching[C]∥2012 IEEE Conference on Computer Vision and Pattern Recognition, June 16-21, 2012, Providence, RI, USA. New York: IEEE, 2012: 1402-1409.

【6】Mei X, Sun X, Dong W M, et al. Segment-tree based cost aggregation for stereo matching[C]∥2013 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2013, Portland, OR, USA. New York: IEEE, 2013: 313-320.

【7】Liu X S, Shen J X, Zhang Y P. Adaptive support weight stereo matching algorithm based on human visual characteristics[J]. Laser & Optoelectronics Progress, 2018, 55(3): 031013.
刘雪松, 沈建新, 张燕平. 基于人眼视觉特性的自适应支持权重立体匹配算法[J]. 激光与光电子学进展, 2018, 55(3): 031013.

【8】Gong W B, Gu G H, Qian W X, et al. Stereo matching algorithm based on the inter color correlation and adaptive support weight[J]. Chinese Journal of Lasers, 2014, 41(8): 0812001.
龚文彪, 顾国华, 钱惟贤, 等. 基于颜色内相关和自适应支撑权重的立体匹配算法[J]. 中国激光, 2014, 41(8): 0812001.

【9】Hao H X, Liu F, Jiao L C, et al. A non-local means algorithm for image denoising using structure adaptive window[J]. Journal of Xi′an Jiaotong University, 2013, 47(12): 71-76.
郝红侠, 刘芳, 焦李成, 等. 采用结构自适应窗的非局部均值图像去噪算法[J]. 西安交通大学学报, 2013, 47(12): 71-76.

【10】Zhu S J, Li Y H. A terahertz image denoising algorithm based on adaptive manifolds and high-dimensional filtering[J]. Journal of Terahertz Science and Electronic Information Technology, 2016, 14(4): 497-501, 507.
朱书进, 李跃华. 基于自适应流形高维滤波的太赫兹图像滤波算法[J]. 太赫兹科学与电子信息学报, 2016, 14(4): 497-501, 507.

【11】Choi O, Chang H S. Yet another cost aggregation over models[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5397-5410.

【12】Yoon K J, Kweon I S. Adaptive support-weight approach for correspondence search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 650-656.

【13】Tomasi C, Manduchi R. Bilateral filtering for gray and color images[C]∥Sixth International Conference on Computer Vision, January 7, 1998, Bombay, India. New York: IEEE, 1998: 839-846.

【14】Zhu S, Cao D H, Wu Y B, et al. Edge-aware dynamic programming-based cost aggregation for robust stereo matching[J]. Journal of Electronic Imaging, 2015, 24(4): 043016.

【15】Hosni A, Rhemann C, Bleyer M, et al. Fast cost-volume filtering for visual correspondence and beyond[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(2): 504-511.

【16】He K M, Sun J, Tang X O. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409.

【17】Zhang K, Fang Y Q, Min D B, et al. Cross-scale cost aggregation for stereo matching[C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, OH, USA. New York: IEEE, 2014: 1590-1597.

【18】Yao L, Liu Z K, Wang B F. Stereo matching based on pyramid transform cross-scale cost aggregation[J]. Journal of System Simulation, 2016, 28(9): 2227-2234.
姚莉, 刘助奎, 王秉凤. 基于金字塔变换跨尺度代价聚合的立体匹配[J]. 系统仿真学报, 2016, 28(9): 2227-2234.

【19】Marr D, Poggio T. A computational theory of human stereo vision[J]. Proceedings of the Royal Society B: Biological Sciences, 1979, 204(1156): 301-328.

【20】Yin S B, Wang Y B, Li D P, et al. Fast blind restoration for microscopic visual defocused images based on two guided filterings[J]. Acta Optica Sinica, 2017, 37(4): 0410002.
尹诗白, 王一斌, 李大鹏, 等. 两次引导滤波的显微视觉散焦图像快速盲复原[J]. 光学学报, 2017, 37(4): 0410002.

【21】Chen S, Chen X D, Su X, et al. Local stereo matching algorithm based on weighted guided filter[J]. Nanotechnology and Precision Engineering, 2017, 15(5): 394-399.
?#28388;? 陈晓冬, ?#25307;? 等. 基于加权引导滤波的局部立体匹配算法[J]. 纳米技术与精密工程, 2017, 15(5): 394-399.

【22】Wang Z, Zhu S Q, Bu Y, et al. Stereo matching algorithm using improved guided filtering[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(12): 2262-2269.
王志, 朱世强, 卜琰, 等. 改进导向滤波器立体匹配算法[J]. 浙江大学学报(工学版), 2016, 50(12): 2262-2269.

【23】Scharsteinand D, Szeliski R, Hirschmüller H. The middlebury stereo vision page[EB/OL]. (2001-12-19)[2018-08-24]. http://vision.middlebury.edu/stereo/.

引用该论文

Wang Kai,Li Zhiwei,Zhu Chengde,Wang Lu,Huang Runcai,Guo Hengchang. Local Stereo Matching Algorithm Based on Secondary Guided Filtering[J]. Laser & Optoelectronics Progress, 2019, 56(8): 081004

王凯,李志伟,朱成德,王鹿,黄润才,郭亨长. 基于二次引导滤波的局部立体匹配算法[J]. 激光与光电子学进展, 2019, 56(8): 081004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

一肖中特公式
3快三计划软件 49码高手心水资料大全 吉子棋牌龙虎计划 时时彩五星双胆稳赚法 时时彩技巧稳赚吗 快三二同号稳赚技巧 北京pk软件 分分彩稳赚技巧的方法方式 时时彩毒胆稳赚方法 黑客为啥不接博彩