一肖中特公式
首页 > 论文 > 激光与光电子学进展 > 56卷 > 8期(pp:81008--1)

真彩微光夜视图像融合算法

Image Fusion Algorithms for True Color Low Light Level Night Vision

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

简要阐述了基于全波与三波段的真彩色微光夜视系统原理,结合图像融合的一般算法,研究了加权平均法、基于线性变换增强的Brovey法、 HIS(色调、亮?#32676;?#39281;?#25237;?空间法及基于边缘分割的HIS法4种真彩微光夜视图像融合算法,详细阐述了融合算法的实现方法和过程。研究结果表明,利用基于线性变换增强的Brovey法,得到场景一?#32479;?#26223;二的融合图像的综合客观评价指标值,分别为27.9647、31.2756,均大于其余3种算法得到的值。在这4种融合算法中,由基于线性变换增强的Brovey法得到的融合图像视觉效果最优。

Abstract

The principle of a true color low light level night vision system based on full-wave and three-wave bands is briefly described. Combining with the general image fusion algorithms, four image fusion algorithms for low-light-level night vision, including the weighted average method, the Brovey method based on linear transformation enhancement, the HIS (hue, intensity and saturation) space method, and the HIS method based on edge segmentation are studied. The realization methods and processes of these fusion algorithms are described in detail. The research results show that by the Brovey method based on linear transformation enhancement, the comprehensive objective evaluation indexes of fusion images for Scene 1 and Scene 2 are 27.9647 and 31.2756, respectively, larger than those by the other three algorithms. Among these four fusion algorithms, the visual effect of fusion images obtained by the Brovey method based on linear transformation enhancement is the best.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O439

DOI:10.3788/lop56.081008

所属栏目:图像处理

基金项目:国家自然科学基金(61801507)

收稿日期:2018-10-08

修改稿日期:2018-10-10

网络出版日期:2018-10-31

作者单位    点击查看

蒋?#21697;?/b>:陆军工程大学石家庄校区电子与光学工程系, 河北 石家庄 050000
武东生:陆军工程大学石家庄校区电子与光学工程系, 河北 石家庄 050000
?#32856;?#29788;:陆军工程大学石家庄校区电子与光学工程系, 河北 石家庄 050000

联系人作者:蒋?#21697;[email protected])

【1】Meng F L. Research on color night vision technology based on multiband[D]. Nanjing: Nanjing University of Science and Technology, 2013: 1-2.
孟凡龙. 基于多波段的彩色夜视技术的研究[D]. 南京: 南京理工大学, 2013: 1-2.

【2】Chen Y C, Hu W G, Wu D S, et al. Triple-band low light level color night vision technology[J]. Journal of Applied Optics, 2015, 36(3): 430-434.
陈一超, 胡文刚, 武东生, 等. 三波段微光彩色夜视方法研究[J]. 应用光学, 2015, 36(3): 430-434.

【3】Sun A P, Gong Y Y, Zhu Y P, et al. Optical system design of low-light-level and infrared image fusion hand-held viewer[J]. Infrared Technology, 2013, 35(11): 712-717, 736.
孙爱平, 龚杨云, 朱尤攀, 等. 微光与红外图像融合手持观察镜光学系统设计[J]. 红外技术, 2013, 35(11): 712-717, 736.

【4】Yu F. Low light level bispectral single channel color night vision technology[D]. Nanjing: Nanjing University of Science and Technology, 2009: 4-12.
俞飞. 微光双谱单通道彩色夜视技术[D]. 南京: 南京理工大学, 2009: 4-12.

【5】Xu M X, Qian W X, Gu G H, et al. Image fusion and colorization of infrared and visible images using a coaxial optical system[J]. Laser & Optoelectronics Progress, 2013, 50(9): 091004.
徐萌兮, 钱惟贤, 顾国华, 等. 共轴光学系统下的红外与可见光图像融合与彩色化[J]. 激光与光电子学进展, 2013, 50(9): 091004.

【6】Paicopolosa P S, Hixonb J G, Nosecke V A. Human visual performance of a dual band I2/IR sniper scope[J]. Proceedings of SPIE, 2007, 6737: 1-12.

【7】Wang Y M, Chen D M, Zhao G B. Image fusion algorithm of infrared and visible images based on target extraction and Laplace transformation[J]. Laser & Optoelectronics Progress, 2017, 54(1): 011002.
汪玉美, 陈代梅, 赵根保. 基于目标提取与拉普拉斯变换的红外和可见光图像融合算法[J]. 激光与光电子学进展, 2017, 54(1): 011002.

【8】Gao W, Zhu M, Hao Z C. Survey of color night vision technology[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(12): 1168-1179.
高文, 朱明, 郝志成. 彩色夜视技术的研究进展[J]. 液晶与显示, 2016, 31(12): 1168-1179.

【9】Wang L P, Sun S Y, Chen Q, et al. Low light level image characteristics and image fusion technology[J]. Journal of Infrared and Millimeter Waves, 2000, 19(4): 289-292.
王利平, 孙韶远, 陈钱, 等. 微光图像特征分析及图像融合技术研究[J]. 红外与毫米波学报, 2000, 19(4): 289-292.

【10】Tang S Q. Chromaticity[M]. Beijing: Beijing Institute of Technology Press, 1990: 21-25.
?#28010;?#38738;. 色度学[M]. ?#26412;? ?#26412;?#29702;工大学出版社, 1990: 21-25.

【11】Guo L, Li H H, Bao Y S. Image fusion[M]. Beijing: Publish House of Electronics Industry, 2008.
郭雷, 李晖晖, 鲍永生. 图像融合[M]. ?#26412;? 电子工业出版社, 2008.

【12】He T D. Research on remote sensing image fusion methods[D]. Xi′an: Shaanxi Normal University, 2009: 6-9.
何同弟. 遥感图像融合方法研究[D]. 西安: 陕西师范大学, 2009: 6-9.

【13】Wang L. Research on the algorithm and real-time implementation of infrared image enhancement[D]. Xi′an: Xidian University, 2007: 38.
王磊. 红外图像增强算法研究及其实时实现技术[D]. 西安: 西安电子科技大学, 2007: 38.

【14】Yang X, Pei J H, Yang W H. A method to fuse multispectral and high resolution images based on edge information[J]. Acta Automatica Sinica, 2002, 28(3): 441-444.
杨烜, 裴继红, 杨万海. 基于边缘信息的多光谱高分辨图像融合方法[J]. 自动化学报, 2002, 28(3): 441-444.

【15】Gao S S, Jin W Q, Wang L X, et al. Objective quality assessment of image fusion[J]. Journal of Applied Optics, 2011, 32(4): 671-677.
高绍姝, 金伟其, 王岭雪, 等. 图像融合质量客观评价方法[J]. 应用光学, 2011, 32(4): 671-677.

【16】Zhang Y, Jin W Q. Study of assessment effects and image fusion algorithms performance analysis[J]. Laser & Optoelectronics Progress, 2010, 47(10): 101001.
张勇, 金伟其. 图像融合算法性能分析与评价效果研究[J]. 激光与光电子学进展, 2010, 47(10): 101001.

引用该论文

Jiang Yunfeng,Wu Dongsheng,Huang Fuyu. Image Fusion Algorithms for True Color Low Light Level Night Vision[J]. Laser & Optoelectronics Progress, 2019, 56(8): 081008

蒋?#21697;?武东生,?#32856;?#29788;. 真彩微光夜视图像融合算法[J]. 激光与光电子学进展, 2019, 56(8): 081008

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

一肖中特公式