一肖中特公式
首页 > 论文 > Opto-Electronic Advances > 2卷 > 4期(pp:180022--1)

A review of crosstalk research for plasmonic waveguides

A review of crosstalk research for plasmonic waveguides

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Plasmonic waveguides, as a competitive candidate, have been widely studied in rapid developing photonic integrated circuits (PICs) and optical interconnection fields. However, crosstalk between plasmonic waveguides is a critical issue that has to be considered in practice. Actually, crosstalk dominates the ultimate integration density of the planar photonic circuits. This paper reviews the recent research work on evaluation methods and crosstalk suppression approaches of plasmonic waveguides. Three crosstalk evaluation methods based on comparison of specific parameters of waveguides have been summarized. Furthermore, four specific approaches to reduce crosstalk have been illustrated as two categories according to their impacts on waveguide performances and the whole circuit. One means of crosstalk suppression is changing the placement of waveguides, which could maintain the transmission characteristics of the original waveguide. The other means is inserting medium, which has the advantage of occupying smaller space compared to the first method. Consequently, to suppress crosstalk between plasmonic waveguides, one should choose suitable approach.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.29026/oea.2019.180022

所属栏目:Review

基金项目:This work was supported by the Shenzhen Science Technology and Innovation Commission (JCYJ20160427174443407, JCY20160331114526190).

收稿日期:2018-11-06

修改稿日期:2019-01-23

网络出版日期:--

作者单位    点击查看

Junxian Ma:College of Information Engineering, Shenzhen University, Shenzhen 518000, China
Dezheng Zeng:College of Information Engineering, Shenzhen University, Shenzhen 518000, China
Yatao Yang:College of Information Engineering, Shenzhen University, Shenzhen 518000, China
Can Pan:College of Information Engineering, Shenzhen University, Shenzhen 518000, China
Li Zhang:College of Information Engineering, Shenzhen University, Shenzhen 518000, China
Haidong Xu:University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen 518000, China

联系人作者:Li Zhang([email protected])

【1】Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nat Photonics 4, 83–91 (2010).

【2】Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

【3】Dokania R K, Apsel A B. Analysis of challenges for on-chip optical interconnects. In Proceedings of the 19th ACM Great Lakes Symposium on VLSI 275–280 (ACM, 2009); http://doi.org/10.1145/1531542.1531607.

【4】Miller D A B. Device requirements for optical interconnects to silicon chips. Proc IEEE 97, 1166–1185 (2009).

【5】Piliarik M, Homola J. Surface plasmon resonance (SPR) sensors: approaching their limits. Opt Express 17, 16505–16517 (2009).

【6】Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2, 229–232 (2003).

【7】Charbonneau R, Lahoud N, Mattiussi G, Berini P. Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons. Opt Express 13, 977–984 (2005).

【8】Berini P. Long-range surface plasmon polaritons. Adv Opt Photonics 1, 484–588 (2009).

【9】Steinberger B, Hohenau A, Ditlbacher H, Stepanov A L, Drezet A et al. Dielectric stripes on gold as surface plasmon waveguides. Appl Phys Lett 88, 094104 (2006).

【10】Chen Z, Holmgaard T, Bozhevolnyi S I, Krasavin A V, Zayats A V et al. Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides. Opt Lett 34, 310–312 (2009).

【11】Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006).

【12】Volkov V S, Bozhevolnyi S I, Devaux E, Laluet J Y, Ebbesen T W. Wavelength selective nanophotonic components utilizing channel plasmon polaritons. Nano Lett 7, 880–884 (2007).

【13】Pile D F P, Ogawa T, Gramotnev D K, Okamoto T, Haraguchi M et al. Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Appl Phys Lett 87, 061106 (2005).

【14】Boltasseva A, Volkov V S, Nielsen R B, Moreno E, Rodrigo S G et al. Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths. Opt Express 16, 5252–5260 (2008).

【15】Gramotnev D K, Vernon K C, Pile D F P. Directional coupler using gap plasmon waveguides. Appl Phys B 93, 99–106 (2008).

【16】Tanaka K, Tanaka M, Sugiyama T. Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides. Opt Express 13, 256–266 (2005).

【17】Veronis G, Fan S H. Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Opt Lett 30, 3359–3361 (2005).

【18】Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2, 496–500 (2008).

【19】Dai D X, He S L. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt Express 17, 16646–16653 (2009).

【20】Fujii M, Leuthold J, Freude W. Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides. IEEE Photonics Technol Lett 21, 362–364 (2009).

【21】Zia R, Selker M D, Catrysse P B, Brongersma M L. Geometries and materials for subwavelength surface plasmon modes. J Opt Soc Am A 21, 2442–2446 (2004).

【22】Liu L, Han Z H, He S L. Novel surface plasmon waveguide for high integration. Opt Express 13, 6645–6650 (2005).

【23】Veronis G, Fan S H. Crosstalk between three-dimensional plasmonic slot waveguides. Opt Express 16, 2129–2140 (2008).

【24】Bian Y S, Zheng Z, Zhao X, Zhu J S, Zhou T. Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration. Opt Express 17, 21320–21325 (2009).

【25】Song Y, Yan M, Yang Q, Tong L M, Qiu M. Reducing crosstalk between nanowire-based hybrid plasmonic waveguides. Opt Commun 284, 480–484 (2011).

【26】Xiao J, Liu J S, Zheng Z, Bian Y S, Wang G J et al. Low-loss metal-insulator-semiconductor waveguide with an air core for on-chip integration. Opt Commun 285, 3604–3607 (2012).

【27】Devaux E, Bozhevolnyi S I, Ebbesen T W, Volkov V S, Zenin V A et al. Directional coupling in channel plasmon-polariton waveguides. Opt Express 20, 6124–6134 (2012).

【28】Han Z H, Bozhevolnyi S I. Radiation guiding with surface plasmon polaritons. Rep Prog Phys 76, 016402 (2013).

【29】Huang C C. Ultra-long-range symmetric plasmonic waveguide for high-density and compact photonic devices. Opt Express 21, 29544–29557 (2013).

【30】Shruti R K S, Bhattacharyya R. Coupling and crosstalk characteristics of hybrid silicon plasmonic waveguides. Appl Phys B 116, 241–248 (2014).

【31】Chen L, Zhang T, Hong W, Zhou X, Li X. A graphene-based hybrid plasmonic waveguide with ultra-deep subwavelength confinement. Journal of Lightwave Technology 32, 4199–4203 (2014).

【32】Ma A N, Li G J, Li Y E. Crosstalk and coupling analysis of wedge plasmon polariton waveguides by the improved coupled mode theory. J Nanoelectron Optoelectron 10, 828–832 (2015).

【33】Kuznetsov E V, Merzlikin A M, Zyablovsky A A, Vinogradov A P, Lisyansky A A. Suppression of crosstalk in coupled plasmonic waveguides. arXiv:1611.08214 [physics.optics] (2016).

【34】He X Q, Ning T G, Lu S H, Zheng J J, Li J et al. Ultralow loss graphene-based hybrid plasmonic waveguide with deep-subwavelength confinement. Opt Express 26, 10109–10118 (2018).

【35】Holmgaard T, Chen Z, Bozhevolnyi S I, Markey L, Dereux A. Design and characterization of dielectric-loaded plasmonic directional couplers. J Lightw Technol 27, 5521–5528 (2009).

【36】Kwon M S. Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology. Opt Express 19, 8379–8393 (2011).

【37】Bian Y S, Gong Q H. Optical performance of one-dimensional hybrid metal–insulator–metal structures at telecom wavelength. Opt Commun 308, 30–35 (2013).

【38】Bian Y S, Zheng Z, Zhao X, Liu L, Su Y L et al. Dielectrics covered metal nanowires and nanotubes for low-loss guiding of subwavelength plasmonic modes. J Lightw Technol 31, 1973–1979 (2013).

【39】Hao R, Cassan E, Xu Y, Qiu M, Wei X C et al. Reconfigurable parallel plasmonic transmission lines with nanometer light localization and long propagation distance. IEEE J Sel Top Quantum Electron 19, 4601809 (2013).

【40】Hao R, Peng X L, Chen H S, Yin W Y, Li E P. Plasmonic transmission lines with zero crosstalk. In Proceedings of 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility 1021–1023 (IEEE, 2016); http://doi.org/10.1109/APEMC.2016.7522934.

【41】Dolatabady A, Granpayeh N. Plasmonic directional couplers based on multi-slit waveguides. Plasmonics 12, 597–604 (2017).

【42】Nakayama K, Tonooka Y, Ota M, Ishii Y, Fukuda M. Passive plasmonic demultiplexers using multimode interference. J Lightw Technol 36, 1979–1984 (2018).

【43】Joshi S, Nehra V, Kaushik B K. Modeling and simulation analysis of graphene integrated silicon waveguides. Proc SPIE 10345, 1034518 (2017).

【44】Kwon M S, Kim Y. Theoretical investigation of intersections of metal-insulator-silicon-insulator-metal waveguides. IEEE Photonics J 8, 2701510 (2016).

【45】Liu J, Xiao J, Zhu J, Liu L, Zhou T et al. Dielectrics covered metal nanowires and nanotubes for low-loss guiding of subwavelength plasmonic modes. Journal of Lightwave Technology 31, 1973–1979 (2013).

【46】Zhou W, Huang X G. Long-range air-hole assisted subwavelength waveguides. Nanotechnology 24, 235203 (2013).

【47】Jiang W F, Cheng F Y, Xu J, Wan H D. Compact and low-crosstalk mode (de)multiplexer using a triple plasmonic-dielectric waveguide-based directional coupler. J Opt Soc Am B 35, 2532–2540 (2018).

【48】Cui J, Sun Y, Wang L, Ma P J. Graphene plasmonic waveguide based on a high-index dielectric wedge for compact photonic integration. Optik 127, 152–155 (2016).

【49】Mrejen M, Suchowski H, Hatakeyama T, Wu C H, Feng L et al. Adiabatic elimination-based coupling control in densely packed subwavelength waveguides. Nat Commun 6, 7565 (2015).

引用该论文

Junxian Ma,Dezheng Zeng,Yatao Yang,Can Pan,Li Zhang,Haidong Xu. A review of crosstalk research for plasmonic waveguides[J]. Opto-Electronic Advances, 2019, 2(4): 180022

Junxian Ma,Dezheng Zeng,Yatao Yang,Can Pan,Li Zhang,Haidong Xu. A review of crosstalk research for plasmonic waveguides[J]. Opto-Electronic Advances, 2019, 2(4): 180022

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

一肖中特公式
快3和值技巧稳赚方法如下 群北京快3开奖 广东时时快乐十分钟 无错36码特2019 快速时时开奖网址 分分快三时时计划app 浙江12选5技巧稳赚 河北时时软件手机版下载 腾讯分分人工计划软件 大乐透中奖规则