一肖中特公式
首页 > 论文 > Opto-Electronic Advances > 2卷 > 4期(pp:180030--1)

Revealing the plasmon coupling in gold nanochains directly from the near field

Revealing the plasmon coupling in gold nanochains directly from the near field

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

We studied the near-field properties of localized surface plasmon resonances in finite linear gold nanochains using photoemission electron microscopy (PEEM). The localization of the electromagnetic field in the near-field region was mapped at high spatial resolution. By tuning the excitation laser wavelength, we can obtain the near-field spectra, from which the energy splitting between longitudinal (L) and transverse (T) plasmon modes can be revealed. In particular, the L-mode red shifts and the T-mode blue shifts with increasing chain length. The red shift of the L-mode is highly dependent on the gap distance. In contrast, the T-mode almost remains constant within the range of gap distance we investigated. This energy splitting between the L-mode and the T-mode of metallic chains is in agreement with previous far-field measurements, where it was explained by dipole-dipole near-field coupling. Here, we provide direct proof of this near-field plasmon coupling in nanochains via the above-described near-field measurements using PEEM. In addition, we explore the energy transport along the gold nanochains under excitation at oblique illumination via PEEM measurements together with numerical simulations.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.29026/oea.2019.180030

所属栏目:Original Article

基金项目:This study was supported by Grants-in-Aid for Scientific Research (Grant Nos. JP18H05205, JP17H01041, JP17H05245, and JP17H05459). We acknowledge the support from the Nanotechnology Platform (Hokkaido University) and Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials (Five-Star Alliance) of MEXT. Q. Sun also acknowledges the support from the National Natural Science Foundation of China (NSFC) (No. 11527901).

收稿日期:2018-12-27

修改稿日期:2019-03-12

网络出版日期:--

作者单位    点击查看

Quan Sun:Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, JapanCollege of Electronic Science and Engineering, Jilin University, Changchun 130012, China
Han Yu:Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
Kosei Ueno:Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
Shuai Zu:Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
Yasutaka Matsuo:Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
Hiroaki Misawa:Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan

联系人作者:Quan Sun([email protected])

【1】Maier S A. Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

【2】Ueno K, Misawa H. Spectral properties and electromagnetic field enhancement effects on nano-engineered metallic nanoparticles. Phys Chem Chem Phys 15, 4093–4099 (2013).

【3】Kelly K L, Coronado E, Zhao L L, Schatz G C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107, 668–677 (2003).

【4】Halas N J, Lal S, Chang W S, Link S, Nordlander P. Plasmons in strongly coupled metallic nanostructures. Chem Rev 111, 3913–3961 (2011).

【5】Wang X L, Gogol P, Cambril E, Palpant B. Near- and far-field effects on the plasmon coupling in gold nanoparticle arrays. J Phys Chem C 116, 24741–24747 (2012).

【6】Song H F, Sun Q, Li J, Yang F, Yang J H et al. Exotic mode suppression in plasmonic heterotrimer system. J Phys Chem C 123, 1398–1405 (2019).

【7】Barrow S J, Funston A M, Gomez D E, Davis T J, Mulvaney P. Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer. Nano Lett 11, 4180–4187 (2011).

【8】Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2, 229–232 (2003).

【9】Wei Q H, Su K H, Durant S, Zhang X. Plasmon resonance of finite one-dimensional Au nanoparticle chains. Nano Lett 4, 1067–1071 (2004).

【10】Arnold M D, Blaber M G, Ford M J, Harris N. Universal scaling of local plasmons in chains of metal spheres. Opt Express 18, 7528–7542 (2010).

【11】De Waele R, Koenderink A F, Polman A. Tunable nanoscale localization of energy on plasmon particle arrays. Nano Lett 7, 2004–2008 (2007).

【12】Quinten M, Leitner A, Krenn J R, Aussenegg F R. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt Lett 23, 1331–1333 (1998).

【13】Willingham B, Link S. Energy transport in metal nanoparticle chains via sub-radiant plasmon modes. Opt Express 19, 6450–6461 (2011).

【14】Solis Jr D, Willingham B, Nauert S L, Slaughter L S, Olson J et al. Electromagnetic energy transport in nanoparticle chains via dark plasmon modes. Nano Lett 12, 1349–1353 (2012).

【15】Brongersma M L, Hartman J W, Atwater H A. Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys Rev B 62, R16356–R16359 (2000).

【16】Maier S A, Kik P G, Atwater H A. Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss. Appl Phys Lett 81, 1714–1716 (2002).

【17】Maier S A, Brongersma M L, Kik P G, Atwater H A. Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy. Phys Rev B 65, 193408 (2002).

【18】Chen H Y, He C L, Wang C Y, Lin M H, Mitsui D et al. Far-field optical imaging of a linear array of coupled gold nanocubes: direct visualization of dark plasmon propagating modes. ACS Nano 5, 8223–8229 (2011).

【19】Pocock S R, Xiao X F, Huidobro P A, Giannini V. Topological plasmonic chain with retardation and radiative effects. ACS Photonics 5, 2271–2279 (2018).

【20】Salerno M, Krenn J R, Hohenau A, Ditlbacher H, Schider G et al. The optical near-field of gold nanoparticle chains. Opt Commun 248, 543–549 (2005).

【21】Shimada T, Imura K, Okamoto H, Kitajima M. Spatial distribution of enhanced optical fields in one-dimensional linear arrays of gold nanoparticles studied by scanning near-field optical microscopy. Phys Chem Chem Phys 15, 4265–4269 (2013).

【22】Kim S I, Imura K, Kim S, Okamoto H. Confined optical fields in nanovoid chain structures directly visualized by near-field optical imaging. J Phys Chem C 115, 1548–1555 (2011).

【23】Krenn J R, Dereux A, Weeber J C, Bourillot E, Lacroute Y et al. Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles. Phys Rev Lett 82, 2590–2593 (1999).

【24】Coenen T, Vesseur E J R, Polman A, Koenderink A F. Directional emission from plasmonic yagi-uda antennas probed by angle-resolved cathodoluminescence spectroscopy. Nano Lett 11, 3779–3784 (2011).

【25】Liu Z X, Jiang M L, Hu Y L, Lin F, Shen B et al. Scanning cathodoluminescence microscopy: applications in semiconductor and metallic nanostructures. Opto-Electron Adv 1, 180007 (2018).

【26】Kubo A, Onda K, Petek H, Sun Z J, Jung Y S et al. Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano Lett 5, 1123–1127 (2005).

【27】Kubo A, Pontius N, Petek H. Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface. Nano Lett 7, 470–475 (2007).

【28】Aeschlimann M, Brixner T, Fischer A, Kramer C, Melchior P et al. Coherent two-dimensional nanoscopy. Science 333, 1723–1726 (2011).

【29】Douillard L, Charra F, Korczak Z, Bachelot R, Kostcheev S et al. Short range plasmon resonators probed by photoemission electron microscopy. Nano Lett 8, 935–940 (2008).

【30】Schertz F, Schmelzeisen M, Mohammadi R, Kreiter M, Elmers H J et al. Near field of strongly coupled plasmons: uncovering dark modes. Nano Lett 12, 1885–1890 (2012).

【31】Konenkamp R, Word R C, Fitzgerald J P S, Nadarajah A, Saliba S. Controlled spatial switching and routing of surface plasmons in designed single-crystalline gold nanostructures. Appl Phys Lett 101, 141114 (2012).

【32】Sun Q, Ueno K, Yu H, Kubo A, Matsuo Y et al. Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy. Light: Sci Appl 2, e118 (2013).

【33】Yang J H, Sun Q, Ueno K, Shi X, Oshikiri T et al. Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes. Nat Commun 9, 4858 (2018).

【34】Yu H, Sun Q, Ueno K, Oshikiri T, Kubo A et al. Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy. ACS Nano 10, 10373–10381 (2016).

【35】Spektor G, Kilbane D, Mahro A K, Frank B, Ristok S et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science 355, 1187–1191 (2017).

【36】Ji B Y, Song X W, Dou Y P, Tao H Y, Gao X et al. Two-color multiphoton emission for comprehensive reveal of ultrafast plasmonic field distribution. New J Phys 20, 073031 (2018).

【37】Ji B Y, Wang Q, Song X W, Tao H Y, Dou Y P et al. Disclosing dark mode of femtosecond plasmon with photoemission electron microscopy. J Phys D: Appl Phys 50, 415309 (2017).

【38】Ueno K, Mizeikis V, Juodkazis S, Sasaki K, Misawa H. Optical properties of nanoengineered gold blocks. Opt Lett 30, 2158–2160 (2005).

【39】Ueno K, Juodkazis S, Mizeikis V, Sasaki K, Misawa H. Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths. Adv Mater 20, 26–30 (2008).

【40】Wu B T, Ueno K, Yokota Y, Sun K, Zeng H P et al. Enhancement of a two-photon-induced reaction in solution using light-harvesting gold nanodimer structures. J Phys Chem Lett 3, 1443–1447 (2012).

【41】Rong K X, Gan F Y, Shi K B, Chu S S, Chen J J. Configurable integration of on-chip quantum dot lasers and subwavelength plasmonic waveguides. Adv Mater 30, 1706546 (2018).

【42】Wang M, Cao M, Chen X, Gu N. Subradiant plasmon modes in multilayer metal-dielectric nanoshells. J Phys Chem C 115, 20920–20925 (2011).

【43】Liu M Z, Lee T W, Gray S K, Guyot-Sionnest P, Pelton M. Excitation of dark plasmons in metal nanoparticles by a localized emitter. Phys Rev Lett 102, 107401 (2009).

引用该论文

Quan Sun,Han Yu,Kosei Ueno,Shuai Zu,Yasutaka Matsuo,Hiroaki Misawa. Revealing the plasmon coupling in gold nanochains directly from the near field[J]. Opto-Electronic Advances, 2019, 2(4): 180030

Quan Sun,Han Yu,Kosei Ueno,Shuai Zu,Yasutaka Matsuo,Hiroaki Misawa. Revealing the plasmon coupling in gold nanochains directly from the near field[J]. Opto-Electronic Advances, 2019, 2(4): 180030

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

一肖中特公式
彩票助赢软件手机下载 赌场赌盘玩法 3d组六6码遗漏 广州11选五计划软件下载 11选5任选5倍投中奖机 三星组选怎么算中奖 10分快3计划软件 五分快三计划软件下载 体彩11选5任稳赚不赔技巧 七乐彩开奖视频直播