一肖中特公式
首页 > 论文 > 激光与光电子学进展 > 56卷 > 9期(pp:91009--1)

基于直线截距比的三维点云特征提取

Feature Extraction from 3D Point Clouds Based on Linear Intercept Ratio

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一?#20013;?#30340;点云特征检测算子——直线截距比特征检测算子。根据相邻点之间的几何关系提出直线截距比,构建了特征筛选条件函数,利用关于点距的高?#36141;?#25968;对特征筛选条件函数进行修正。实验结果表明,随着模型中噪声强度的增加,所提算法的特征误识别率更低。所提算法能快速、准确地筛选出特征点,且具有良好的抗噪能力和更强的特征识别能力。

Abstract

A new concept of point-cloud feature detection operator called linear intercept ratio feature detection operator was introduced in this paper. Herein, the linear intercept ratio was defined based on the geometric relation between the adjacent points to construct the function of feature point extraction modified by the Gaussian function of the distance between the points. The experimental results denote that the proposed method exhibits a decreased error recognition rate with the increase of the noise intensity in the model. Further, the proposed method can rapidly and accurately screen out the feature points, and exhibits a good anti-noise capability and an enhanced feature recognition ability.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/lop56.091009

所属栏目:图像处理

基金项目:国家自然科学基金(51065021,51365037)、江西省教育厅科技项目(GJJ181032)

收稿日期:2018-11-09

修改稿日期:2018-12-03

网络出版日期:2018-12-06

作者单位    点击查看

傅?#21152;?/b>:南昌大学机电工程学院, 江西 南昌 330031新余学院中兴通讯信息学院, 江西 新余 338024
吴禄慎:南昌大学机电工程学院, 江西 南昌 330031

联系人作者:吴禄慎([email protected])

【1】Fu S Y, Wu L S, Chen H W. Point cloud simplification method based on space grid dynamic partitioning[J]. Acta Optica Sinica, 2017, 37(11): 1115007.
傅?#21152;? 吴禄慎, ?#31108;?#20255;. 空间栅格动态划分的点云精简方法[J]. 光学学报, 2017,37(11): 1115007.

【2】Li R Z, Yang M, Liu Y Y, et al. An uniform simplification algorithm for scattered point cloud[J]. Acta Optica Sinica, 2017, 37(7): 0710002.
李仁忠, 杨曼, 刘阳阳, 等. 一种散乱点云的均匀精简算法[J]. 光学学报, 2017, 37(7): 0710002.

【3】Zhang Q S, Zhou Y, Hu X M. Hand vein recognition based on three dimensional point clouds matching[J]. Acta Optica Sinica, 2015, 35(1): 0115005.
张祺深, 周雅, 胡晓明, 等. 基于三维点云匹配的手掌静脉识别[J]. 光学学报, 2015, 35(1): 0115005.

【4】Deng B W, Wang Z B, Jin Y, et al. Feature extraction method of laser scanning point cloud based on morphological gradient[J]. Laser & Optoelectronics Progress, 2018, 55(5): 051203.
邓博文, 王召巴, 金永, 等. 基于形态学梯度的激光扫描点云特征提取方法[J]. 激光与光电子学进展, 2018, 55(5): 051203.

【5】Li R Z, Yang M, Tian Y, et al. Point cloud registration algorithm based on the ISS feature points combined with improved ICP algorithm[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111503.
李仁忠, 杨曼, 田瑜, 等. 基于ISS特征点结合改进ICP的点云配准算法[J]. 激光与光电子学进展, 2017, 54(11): 111503.

【6】Gumhold S, Wang X L, Macleod R. Feature extraction from point clouds[C]∥Proceedings of 10th International Meshing Roundtable, Sandia National Laboratories, October 7-10, 2001, Newport Beach, California, U.S.A. [S.l.:s.n.], 2001: 293-305.

【7】Pauly M, Gross M, Kobbelt L P. Efficient simplification of point-sampled surfaces[C]∥Proceedings of the Conference on Visualization, October 27-November 1, 2002, Boston, MA, USA. New York: IEEE, 2002: 163-170.

【8】Nie J H, Liu Y, Gao H, et al. Feature line detection from point cloud based on signed surface variation and region segmentation[J]. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(12): 2332-2339.
聂建辉, 刘烨, 高浩, 等. 基于符号曲面变化度与特征分区的点云特征线提取算法[J]. 计算机辅助设计与图形学学报, 2015, 27(12): 2332-2339.

【9】Nie J H. Extracting feature lines from point clouds based on smooth shrink and iterative thinning[J]. Graphical Models, 2016, 84: 38-49.

【10】Pauly M, Keiser R, Gross M. Multi-scale feature extraction on point-sampled surfaces[J]. Computer Graphics Forum, 2003, 22(3): 281-289.

【11】Guo Y L, Bennamoun M, Sohel F, et al. 3D object recognition in cluttered scenes with local surface features: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(11): 2270-2287.

【12】Guo Y L, Bennamoun M, Sohel F, et al. A comprehensive performance evaluation of 3D local feature descriptors[J]. International Journal of Computer Vision, 2016, 116(1): 66-89.

【13】Ho H T, Gibbins D. Curvature-based approach for multi-scale feature extraction from 3D meshes and unstructured point clouds[J]. IET Computer Vision, 2009, 3(4): 201-212.

【14】Wushour S, Cao J M. An extraction algorithm for sharp feature points from point clouds[J]. Journal of Xi'an Jiaotong University, 2012, 46(12): 1-5, 73.
吾守尔·斯拉木, 曹巨明. 一?#20013;?#30340;散乱点云尖锐特征提取方法[J]. 西安交通大学学报, 2012, 46(12): 1-5, 73.

【15】Pang X F, Pang M Y, Xiao C X. An algorithm for extracting and enhancing valley-ridge features from point sets[J]. Acta Automatica Sinica, 2010, 36(8): 1073-1083.
?#26377;?#33459;, ?#29992;?#21191;, 肖?#21512;? 点云模型谷脊特征的提取与增强算法[J]. 自动化学报, 2010, 36(8): 1073-1083.

【16】Liu Y, Wang C Y, Gao N, et al. Point cloud adaptive simplification of feature extraction[J]. Optics and Precision Engineering, 2017, 25(1): 245-254.
刘迎, 王朝阳, 高楠, 等. 特征提取的点云自适应精简[J]. 光学 精密工程, 2017, 25(1): 245-254.

【17】Wang L H, Yuan B Z. Feature point detection for 3D scattered point cloud model[J]. Signal Processing, 2011, 27(6): 932-938.
王丽辉, 袁保宗. 三维散乱点云模型的特征点检测[J]. 信号处理, 2011, 27(6): 932-938.

【18】Huang Y, Da F P, Tao H J. An automatic registration algorithm for point cloud based on feature extraction[J]. Chinese Journal of Lasers, 2015, 42(3): 0308002.
黄源, 达飞鹏, 陶海跻. 一种基于特征提取的点云自动配准算法[J]. 中国激光, 2015,42(3): 0308002.

【19】Zhang Y H, Geng G H, Wei X R, et al. Point clouds simplification with geometric feature reservation[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(9): 1420-1427.
张雨禾, 耿国华, 魏潇然, 等. 保留几何特征的散乱点云简化算法[J]. 计算机辅助设计与图形学学报, 2016, 28(9): 1420-1427.

【20】Zhang Y H, Geng G H, Wei X R, et al. A statistical approach for extraction of feature lines from point clouds[J]. Computers & Graphics, 2016, 56: 31-45.

【21】Hoppe H, DeRose T, Duchamp T, et al. Surface reconstruction from unorganized points[C]∥SIGGRAPH ′92 Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, New Yok: ACM, 1992: 71-78.

【22】Zhang Y H, Geng G H, Wei X R, et al. Feature extraction of point clouds using the DBSCAN clustering[J]. Journal of Xidian University, 2017, 44(2): 114-120.
张雨禾, 耿国华, 魏潇然, 等. 采用密度空间聚类的散乱点云特征提取方法[J]. 西安电子科技大学学报, 2017, 44(2): 114-120.

引用该论文

Fu Siyong,Wu Lushen. Feature Extraction from 3D Point Clouds Based on Linear Intercept Ratio[J]. Laser & Optoelectronics Progress, 2019, 56(9): 091009

傅?#21152;?吴禄慎. 基于直线截距比的三维点云特征提取[J]. 激光与光电子学进展, 2019, 56(9): 091009

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

一肖中特公式
6个平码算下期的平特肖 pk10最牛稳赚5码计划全天 11选5任一傻瓜式稳赚方法 七星彩计划最新版 秒速赛车每天稳赚技巧 计划无神北京pk10软件 pk10一天稳赚公式 时时彩稳赚计划网 云南时时历史开奖结果 双色球开奖中奖查询